PSYCHE

VOL. XXI.
APRIL, 1914.
No. 2

THE NORTH AMERICAN FAMILLIES OF LEPIDOPTERA.

By Wh. T. M. Forbes, Worcester, Mass.

The following is an attempt to present in tabular form the differences in the families of Lepidoptera which occur in the United States, to which the few well characterized Central American families of Macros have been added for completeness. None of the accepted lists have been followed strictly in family delimitation. but on the other hand none of the changes is new. The butterflies are according to the system followed by Scudder and Comstock; the Macro-heterocera follow Dyar’s list with a couple of changes; the Tineids are separated along the lines laid down in various papers by Busck, with the addition of the primitive families recognized by Spuler in the European fauna.

As compared with Dyar's list the principal changes are the following:

The Parnassiidæ are combined with the Papilionidæ.
The Agapetidæ, Heliconidæ, Ithomyidæ, Lymnadidæ, Libytheidæ, and Nymphalidæ are combined as Nymphalidæ.
The Megathymidæ with the Hesperiidæ.
The Nycteolidæ with the Noctuidæ, following Hampson. I am not at all sure that the union is justified, but no satisfactory family characters have been developed, and a number of the genera are doubtful. The most distinct characters of the Nycteolidæ are the slender male frenulum-hook, the peculiarly enlarged and bent basal joint of the antenna, the head-restiture, and the raised scaling. The last is shared by various Noctuids, and intergrades seem to occur in the case of the other characters. The peculiar wing-form, which seems to have first given Nycteola its family status, is not shared by our second species, Characoma nilotica ($=$ N. proteella).

Apatelodes is transferred to the mainly tropical family Eupterotidx, on both larval and adult characters, but it makes a very distinct subfamily, largely developed in South America. So far as I can sce the Australia Chelepteryx will also belong to it, and probably other Australian genera. It seems to be one of the interesting types, like the marsupials, which have survived only in America and Australia.

Psychophora fasciata is a normal Noctuid, with large ocelli and typical trifid Noctuid renation; on the other hand, so far as I can see, Curtis' figures of P. sabinii represent the common arctic Hydriomenid geometer which Hulst considered it to be.

The Pyromorphidæ and Chalcosiidæ have been treated as subfamilies of the typically European family Zygænidæ. Acoloithus, of our species, might about as well be placed in the typical Zygæninæ, next to Ino, as among the Pyromorphinæ.

The following partial generic list will explain the disposition of the Tineina:

Yponomeutide	Stenomatider	Cycloplasis?
Simæthis	Stenoma	Coptodisca?
Choreutis	Ide	Douglasia?
Allononyma	Brachiloma	Tinagma?
Setiostoma	Blastobasida	Heliodinida
Glyphipteryx	as in Dyar's list	Heliodines
Atteva (Eta)	exc. Endrosis	Acrolepiida
Sponomeuta	Cosmopterygida	Acrolepia
Plutella	Coleophora?	Gracilariida
Cerostoma	Batrachedra?	Chilocampyla
Trachoma	Cosmopteryx	Acrocercops
Scythris?	Lymnæcia	Parectopa
Argyresthia?	Stilbosis	Gracilaria
Zelleria?	Mompha (Laverna)	Lithocolletis
Epermenia ?	Walshia	Cremastobombycia
Schreckensteinia?	Theisoa (Cacelice)	Ornix
Gelechiida	Chrysopeleia	Lencanthiza
as in Dyar's list	Psacaphora	Marmara
Ocophorida	Leucophryne	Lyonetiidx
as in Dyar`s list	Erineda?	Bedellia?
also Eido	Elachistido	Proleucoptera
Endrosis	Elachista	Philonome
but not Ethmia	Heliozelida	Lyonetia
Ethmiidar	Heliozela	Phyllocnistis
Ethmia	Antispila	Bucculatrix?

Tineidar	Acrolophus	Adelida
Argyresthia?	Hypoclopus	Incurvaria
Zelleria?	Pseudanaphora	Brackenridgia
Monopis	Tiseherïda	Cyane?
Tinea	Tischeria	Isocorypha?
Trichophaga	Coptotriche	Graya?
Tineola	Opostegida	Nemotois
Scardia	Opostega	Adela
Xylesthia	Neptieulidra	Prodoxida
Amydria	Nepticula	Prodoxus
Setomorpha	Ectedemia	Pronuba
Anaphora	Trifurcula	

I acknowledge considerable help from Mr. Busck in this part of the table, and regret he was unable to take time to contribute the Tineina as a whole. The interrogation points indicate some of the principal points where the family positions are uncertain, either from lack of study of dissections, or from failure to develop characters of true family rank. Nost of the genera I have not seen I have simply omitted from the list, unless their position was quite evident. The Heliozelidæ, as they stand here are heterogeneous, with little doubt. Part of the genera may be distributed among the recognized families, while some may need to become typical of new ones. There are indications of a connection between Tischeria, Opostega and this group, through such forms as the Old-world genus Opogona, which may or may not be significant. Opostega is certainly aculeate, Tischeria has structures corresponding to aculere, but so enlarged and modified that their status is doubtful, while I am unable to see any at all in Antispila. The whole range of structure in the five families Gelechiidæ to Blastobaside is hardly as significant as that within the Tineidx, even as here restricted.

The principal difference from the arrangement in Comstock's Mamual is the treatment of the Tortricina, Geometrina and Pyralidina; (except the feathered forms) each as a single family. His Cymatophoride is the Thyatiridæ of this table, and his Zygenidæ are here called Syntomidæ, following general European usage in treating $Z_{\text {ygrena }}$ as the group related to Pyromorpha. The Auzatidæ have been combined with the Drepanidæ (Platypterygidæe).

Kirby's Bibliography is so different in its treatment of family
lines that a detailed comparison is not worth while; for instance his Lasiocampidæ are here divided among the Saturniidæ, Lonomiidæ, Eupterotidæ, Lasiocampidæ, and Megalopygidæ, members of most of which also occur in others of his families.

The characters used are in general familiar, and fully explained, for instance, in Smith's Glossary of Entomology, but the following points may not be clear. The "quadrifid" venation is that in which II_{2} and M_{3} are so closely associated with the stem of cubitus as to appear more or less dislocated branches of it, as well as the two true branches of cubitus; in the trifid renation only M_{3} is associated with cubitus, and M_{2} is free, associated with the radial stem, or lost; of course in primitive forms, where the medials keep their basal connection direct, the cubitus has only the two branches that properly belong to it.

When only one pair of palpi are developed they are the labial; but in a few primitive forms, such as Prodoxus, the maxillary palpi are the larger and more conspicuous-they can be easily distinguished by their attachment to the tongue. and in these primitive forms by their larger number of joints (5) and free movability, being folded near the middle in repose, and usually in dead material.

Aculex are minute spinules scattered over the wing-membrane. They are several times as numerous as the scales, but so small as only to be visible with higher powers of the microscope, and being covered by the scales can only be seen in bleached and stained or denuded wings. In the Micropterygidæ, Hepialidx, Prodoxidæ. Adelidæ and Nepticulidæ they are generally distributed; in the Heliozelidæ, Tischeriidæ and Opostegidæ they are mostly in the region of the base of the cell of the fore wing, and somewhat difficult to find; while in all the other Lepidoptera they are absent, except for a patch of enlarged modified ones near the base of the imner edge of the fore wing.

The antenme in the great majority of Lepidoptera have regularly imbricated scales on the upper side of the shaft, while the sides, pectinations when present, and under side are covered only with minute sensory hairs. In the lowest families, however, such as the Tineidæ, the whole surface is scaled, and on the other hand the Saturniidæ have lost all the scales except on the basal joint.

At the base of the abdomen, on each side, there is a large cavity, which, to judge by its position and gross structure, is probably auditory in function. This is called the trmpanie cavity here, and its outlet, which lies at the boundary between thorax and abdomen, the tympanic opening. Usually it is high up, about on the level of the wings in a spread speeimen, but in the Geometridx it is lower, and generally rery conspicuous. In the Pericopidæ, where it is also partieularly large, it is as high as in most families, and projects slightly above the general surface of the abdomen.

In counting the number of anals in the fore wing (alternative No. 8) an imperfect and rudimentary first anal, which only forms a short bar near the margin, is often met; in the Macros (forms with the wing-membrane three or four times as wide as its fringe or more, and generally hairy or deep vestiture) such a rudiment is not counted; in the Micros (where the wing-membrane is not more than twice as wide as its fringe, and the restiture, except on the head, is scaly) it is. Doubtful cases have generally been entered twice in the table, but no attempt has been made to make the part referring to the Tineina complete.

Table of Families. 1

1. Winged 2
2. Wingless 52
3. Hind wings with fonr or five radials, with at least ten veins besides anals, wing- membrane spinulated 3
4. Hind wings with only one free radial (two in the otherwise much redueed Doug- lasia group); with at most six (or with Se, r) veins from cell 43. Wings hardly wider than their fringe, expanse about one-half inchMicropterygide
5. Wings ample, fringe narrow, expanse over one inch Hepialide
6. Each wing deeply cleft into six narrow strips Orneodide
7. Fore wing moderately cleft into two, and hind wing deeply into three feathersPterophoride
8. Wings entire, or fore wing only, moderately cleft 5
9. Inner margin of fore wing and costal margin of hind wing narrowly folded, and interlocking; fore wing at least four times as long as wide, and base, at least, of hind wing transparent.
๖. Wings not interlocking at middle of margin, very rarely transparent, and ifso with broader fore wings 6

[^0]6. Hind wing lanceolate, without marked anal angle, or notched below apex and trapezoidal; the fringe almost as wide as wing, or wider. .Tineiva in part 5.5
6. Hind wings much broader than their fringe, never lanceolate and rarely trapezoidal with produced apex.

7. A double series of enlarged and divergent scales along Cu of hind wing below
 Pterophorida (Agdistina)

7. No such specialized scales . 8
8. Fore wing with two anals at margin . 9
9. Fore wing with only one anal reaching margin, 1st A rudimentary, or represented by a fold; 3d A at most by a short spur 15
10. Antenne strongly clubbed.. . . . Castniides
11. Antennæ tapering regularly 10
12. Sc and R of hind wing independent, parallel, connected by a strong cross-vein near middle of cell or beyond

11
10. Sc arising from cell near middle (sometimes free also for a short distance near base

Eucleid.e
10. Sc arising near tip of cell.. . 14
10. Sc arising separate from R, rumning closely parallel to it to well beyond end of cell, or fused with it beyond end of cell; the base of R in that case either complete, showing as a short spur, or lost............... Prralidid.e in part
10. Sc. entirely independent of R, or connected by a weak cross-vein, or one near base of wing, Sc and R sharply divergent before end of cell, Tineina in part 55
11. Fore wing with accessory cell. 12
11. No accessory cell. 13
12. Wings lanceolate, strong; body heary, far exceeding the hind wings when spread. Cossid.e.
12. Wings ample, rounded, body short and slender..................... Dalceridae
13. Tongue developed, palpi scaled . Zygoenido (Chalcosiinor)
13. Tongue absent, palpi small and hairy or absent most Psychide (σ^{7} s)
14. R 5 long-stalked, colors light, the northern species with crinkly hair on fore wing. Megalopygid.e
14. R 5 from cell, dark, smoothly scaled forms Zyg.exide (Pyromorphine)
15. Hind wing with three anals, the first often fading out toward base......... 16
15. Hind wing with two anals or less, at most with a short spur of 1 st A at margin
in broad-winged forms.. 17
16. Sc and R of hind wing closely parallel or fused beyond end of cell

Pyralididee in part
16. Sc and R strongly divergent from before end of cell. Tinersa iu part $5 \mathbf{5}$
17. Antennæ distinctly swollen toward tip, and frenulum wanting, (Butterflies) 18
17. Antennæ not swollen toward tip, or if so (Agaristidæ, Sphingidæ) with a strong frenulum

23
18. Fore wing with all veins present, from cell, eves strongly lashed in front, antenne sepa"ated at base by a distance greater than half width of eves

Hesperide.e
18. Fore wing with some radials stalked or absent, eves rarely lashed, antennæ closer together. 19
19. Hind wing with only one anal................................... Papilionid.e
19. Hind wing with two well-developed anals 20
20. \mathbf{M}_{2} from middle of end of cell in both wings, or obsolete, fore wing in northern species with ten or eleven voins 21
20. \mathbf{M}_{2} distinctly associated with radial stem, in one, and usually in both wings; lower discocellular rein often obsolete, with at least a trace of a humeral vein 22
21. A humeral rein in hind wing Erycinidx (Riodinida)
21. No humeral rein Lycenidee
22. Butterfly walking on four legs (except female of Hypatus), radius five-branched,\mathbf{M}_{1} from cellNymphalid.e
29. Butterfly using all its legs for walking, radius usually four-branched, M_{1} stalked with it Pieridee
23. Our species very stout and two inches or more in expanse, the hind wings rarelyreaching beyond middle of abdomen, $S c$ and R of hind wing connected atthe middle of the cell or rather before by a vein $\left(R_{1}\right)$ which is as strong asany; and then closely parallel to end of cell or beyond.Sphingides
23. Wings proportionately larger, Sc and R rarely connected by a strong cross vein, and if so, strongly divergent beyond it 24
24. Sc and R separate, but connected bya more or less distinct cross-vein; accessorycell fused with discal cell, but with the line of separation $\left(R_{4}+_{5}\right)$ indicatedby a slight thickening, starting from an angulation in the stem of R; speciesunder one inch in expanse. a few Tineina 55
24. Accessory cell separated by a full-sized vein, or completely absent 25
25. Cu of fore wing apparently three-(in a couple of Lithosians two-) branched. 26
25. Cu of fore wing apparently four-branched 40
26. Frenulum normal. 27
26. Frenulum rudimentary (less then one fifteenth length of hind wings) or absent 33
27. Sc and R fused from base of hind wing beyond middle, swollen at the base,then rapidly diverging; very slender.Lithosinde in part
27. Sc and R separate at extreme base, then closely approximate or fused a greateror less distance28
27. Sc and R sharply divergent from close to base Uranidde (Epiplemine)
28. Stout-bodied moths, the thorax at least a sixth as wide as length of fore wings29
28. Slender moths 32
29. A strong brace vein from an angle near base of Sc to root of frenulum
Geometridee in part
29. Sc moderately thickened and curved at base 30
30. Cu apparently three-branched in hind wing. 31
30. Cu apparently four-branched in hind wing. Tiyyatiride
31. Tongue wholly absent, the northern species with hyaline subterminal spots
Eupterotide (Apatelodine)Notodontides32. Tympanic opening at base of abdomen small and subdorsal, 1st Λ usuallypartly present, Sc of hind wing slightly bent at base and but little enlarged;the humeral angle not expanded. Usually with M_{3} and Cu_{1} stalked in bothwings.Dioptide
32. Tympanic opening with a few exceptions conspicuous, lateral; 1st A wholly absent in both wings; Sc of hind wing sharply bent or much enlarged at base, almost always with a brace vein running across to base of frenulum most Geometrides
33. Sc and R of hind wing fused for a very short distance, then sharply divergent, separate from base, or connected by a weak cross-vein; tympanic opening inconspicuous
33. Sc sharply divergent from R at extreme base, then sharply bent and touching, fusing or closely parallel to it or connected by a strong cross-vein; tympanic opening conspicuous, lateral
a few Geometrid se
34. Antennex not scaled beyond basal joint.. . . 25
34. Antennæ closely scaled on upper side. 36
35. Two anals; M_{1} of fore wing connate or stalked with radial stem, Ceratocampide
35. M_{1} separate from radial stem; with only one anal, or upper discocellular vein long and lougitudinal... Saturxid.e.
36. Sc of hind wing sharply divergent from R from close to base............... . . 37
36. Sc and R parallel at base, connected by a weak cross-vein. 39
37. R_{4+5} widely separated from R_{3} all the way from cell to margin. . . . Licosomid.e
87. R_{4} and R_{5} arising from cell closely associated with $R_{3} \ldots \ldots \ldots \ldots \ldots$................ 38
38. R_{5} and M_{1} stalked or closely approximate at base, and separate from R_{4}

Uraniido (Uraniino)
38. R_{5} separate from R_{4}, which may be stalked with $R_{3} \ldots \ldots$. Lonomiidoe
39. Frenulun about one-sixteenth length of hind wing. . Eupterotide (Eupterotinc)
39. Frenulum obsolescent, not exceeding humeral angle, or absent...Bombycidx
40. Cu_{2} of fore wing arising from cell about a third way out from base, or even nearer base; R_{5} stalked with M_{1}, with humeral veins in our species; no frenulum. Lasiocampide
40. Cu_{2} of fore wing arising well beyond middle of cell; usually with frenulum. . 41
41. Sc and R of hind wing strong and parallel to beyond end of cell, and then approaching very close or fusing a short distance. Drepanid.e.
41. Sc and R fusing before end of cell or wholly independent.................... . 42
42. Fore wing with complete venation (twelve veins) all the radials, medials and cubitals arising separately, or with R_{2} and 3 shortly stalked. Thyridide
42. R_{3} and ${ }_{4}$ or R_{4} and 5 long-stalked or with some veins absent. 43
43. Sc apparently absent (fused except at extreme base with \mathbb{R})....... Syntomide
43. Sc and R separating before end of cell... . 44
44. Antennæ swollen toward tip.. . Agaristide
44. Shaft of antennæ regularly tapering. 45
45. Ocelli present. 46
45. Ocelli absent. 50
46. Sc and R of hind wing fused to middle of cell or beyond. most Arctiode
46. Sc and R fused for more than a fifth length of cell, but the fusion not reaching middle
46. Sc and R fused for less than a fifth length of cell, the fusion sometimes imperfect.
46. Sc and R connected by a strong cross-vein................. a few Lymantriide*

[^1]47. Hind tarsus ordinarily not more than eight times as long as thick, often with reduced tibial spurs; \mathbf{M}_{2} reduced only in Eubaphe; in the rest of full strength and associate with cubital stem; moths often stout; Se very much swollen at base many Arctides
47. Hind tarsus ordinarily much more slender, the tibia with long spurs; \mathbf{M}_{2} usually well separated from cubital stem, though nearer it than radial, and often weaker than the other veins; Se not more than twice as thick as R in their basal portion; usually slender moths. some Noctuide
48. Tympanic bulle enlarged dorsally, showing from dorsal side as two rounded bosses on the first segment of the abdomen; brilliantly marked species

Pericopides

48. Tympanic bullæ inconspicuous.

49
49. White or yellow species with palpi not reaching the middle of the smoothsealed frout, and four-brauched Cu in both wings.....Arctides (IIaploa)
49. Species with longer palpi, three-branched Cu in hind wings or gray ground color.
most Noctuide
50. Fore wing with raised scale-tufts, small, with Sc and R ordinarily fused to near
middle of cell but free at base...
50. Fore wings smoothly scaled. 51
51. Sc and R of hind wings fused for a point about middle of cell, or connected by a cross-vein most Lymantridide
51. Sc and R fused from base to middle of cell. most Lithosides
52. Legs lost, never leaving cocoon........................... Psychide (of in part)
52. With normal legs .53
53. Cocoon seedlike, with a valve at one end (being formed of the larval case), the moth normally not leaving it

Psychide (os in part)
53. Cocoon normally felted of the larval hair, or rudimentary and underground. . 54
54. Abdomen closely scaled, or spined, or with bristling dark gray hair

Geonetride (a few $\circ \mathrm{s}$)
54. Abdomen smoothly clothed with fine light woolly hair; moth not normally learing the cocoon, which is composed of the larval hair

Lymantridee (a few of)
55. Fore wing with three or four unbranched veins only 56
55. Fore wing with some branched reins. 57
56. A large eyecap.. . Opostegida.

57. A well-developed eyecap, fringed with overlapping scales; labial palpi small, cell slender or wanting. 58
57. Eyecap not developed,-at most with first joint of autema large, a little hollowed on inner side, and fringed with a single row of bristles (pecten) . . 59
58. Cell very small, less than a tenth area of wing, or wholly absent; membrane aculeate.

Nepticulides
58. Cell larger, membrane not aculeate............................. . Lyonetidid
59. Maxillary palpi twice as long as eve, folded, conspicuous.......... Prodoxides
59. Maxillary palpi shorter than eyc, or porrect................................... . 60
60. Vestiture of thorax of deep hair and spatulate hair, also similar on palpi and legs, the palpi usually strongly sexually dimorphic, large in both sexes; wings scalcd, venation complete, with base of media preserved
Tineide (Anaphorine)
60. Palpi barely reaching middle of front or shorter, tongue absent; vestiture of thorax and tibix dense and hairy
(Cossider in part)
60. Thorax, at least, scaled or slender, palpi also in the majority of cases, and fore and middle tibis; often minute moths with lanceolate wings. 61
61. Hind wing lanceolate, much narrower than its own fringe, fore wing much broader but also lanceolate. 62
61. Hind wings with well-marked anal angle and rounded or somewhat pointed apex, not strongly concave below it; when narrower than fore wings, with three well-developed anals. 76
61. Hind wings various in size with produced apex, strongly concave below apex, and again produced more or less on M_{3} and Cu_{1}, with well-marked anal angle. most Gelechiide
62. Maxillary palpi present and folded in repose 63
62. Maxillary palpi obsolete, or three-jointed and porrect. 65
63. Head extremely rough, with bristling vestiture 64
63. Head smooth-scaled, except narrowly behind Acrolepidde
64. Aculeate; \mathbf{R}_{1} of hind wing much stronger than base of main stem of \mathbf{R}, and appearing as a basal fork of Sc.64. Not aculeate; R_{1} of hind wing no stronger than basal portion of Rs , well outfrom base, connecting Sc and R, which are closely parallel toward base
a few Tineides
65. Head very rough and bristly on both vertex and face, second joint of palpuswith lateral bristles toward tipTineide (Tenaga)
65. Lower part of face, at least, smoothly scaled; palpus without bristles. 66
66. Fore wing with four veins or less, either free or stalked, to costa from cell, andfive or six veins to inner margin (R_{5} rumning to outer margin)
some Yionomeutide
66. Fore wing with five veins to costa from cell or with only three or four to inner margin (R_{5} to costa) 67
67. Vertex rough-bristled 68
67. Vertex smooth-scaled, or with a few erect scales behind 70
68. Accessory cell very large, extending nearly half-way to base of wing, fore wingwith heary spinules on base of Sc and base of cellTischeridee
68. Accessory cell small, or more often absent; not aculeate 69
69. A of fore wing forked at lase, costa of hind wing not lobed. Bedella
69. A of fore wing perfectly simple, costa of hind wing strongly lobed, with theobscure basal parts of Sc and R closely parallel to the edge of the lobe
Gracilaridee
70. Sc and R of hind wing nearly straight and parallel toward base, usually con-nected by a distinct, but weak cross-vein R_{1}, a short distance out from base,in a few cases where Sc is very short, with R_{1} independent of it, reaching thecosta beyond its tip; when the costa is lobed with Sc fairly straight, andending at the commencement of the concave portion.71
70. Se and R sharply divergent at base, R_{1} when traceable appearing as a basal fork of Sc , oblique, short, and heary, and R, running nearly through the axis of the wing; or with Se and R both obscure, closely parallel to the basal lobe of the costa, and R functionally replaced by the base of $M \ldots72$
71. Balpi upturned to vertex. Cosmopterygid.
71. Palpi minute, drooping. Heliodinidem
72. Maxillary palpi present, porrect........................ Gracilarimde in part
72. Maxillary palpi absent. 73
73. Cu-stem of hind wing at least two-branched, palpi usually smoothly upturned to vertex, hind tibiæ loosely hairy Elachistid.玉
73. Cu-stem of hind wing simple, free, no cell, or with very short palpi 74
74. Basal joint of antema broadened with overlapping seales (a rudiment of an eyecap), tongue weak, Cu of hind wing simple; hind tibia with a regular series of bristles. Lyonetiidox (Phyllocnistis in part)
74. Basal joint simple or with a slight pecten of bristles. .75
75. Palpi if upturned not reaching middle of front, usually hanging, Heliozelid.e
75. Palpi moderately long and usually slender, upturned in life

Gracilaridde in part
76. Cu_{2} of fore wing arising less than two-thirts way out on cell, most Tortricides
76. Cuz of fore wing arising further out on cell . 77
77. Wing-membrane aculeate; Sc of hind wing with a strong basal fork (the lower
fork being R_{1}), or considerably swollen at base, R and Se usually sharply divergent from base, antennæ often extremely long, vertex very rough

Adelidee in part
77. Wing-membrane not aculeate: antenne never much longer than fore wing; R_{1} rarely as strong as the other veins, and when distinct separated from the base of the wing by several times its length .78
78. Maxillary palpi four- or five-jointed, folded 79
78. Maxillary palpi porrect, three-jointed or rudimentary 80
79. Head only slightly rough behind
79. Vertex with long bristly vestiture Tineide in part
80. M_{1} and ${ }_{2}$ of hind wing both absent Tortricide (Carposina)81
81. Labial palpi with bristles on side of second joint, or vertex and front both withextremely long rough vestiture, and second joint of palpus heavily tuftedand third long; R and M_{1} of hind wing widely separate. . Tineide in part
81. Labial palpi without bristles, head with short, fairly smooth vestiture or thirdjoint of palpus inconspicuous82
82. R and M_{1} of hind wing widely separate at base, at least half as far apart as at margin. 87
82. R and M_{1} of hind wing closely approximate or stalked 83
83. Palpi as long as head, with second joint triangularly scaled, and third less thanhalf as long normally porreet.84
83. Palpi upturned to beyond middle of front often far beyond vertex, the third joint more than half as long as second, and upturned 85
84. R_{4} and ${ }_{5}$ separate. Tortricide (Phaloniine)Gelechinde (male Anarsia)
85. Veins of fore wing all present and \mathbf{R}_{5} running to outer margin

Yposoneutide in part
85. R_{s} running to costa or lost. 86
86. Fore wing with all veins from cell separately, hind wing wider, with R and M_{1} long-stalked. Stenomatide
86. Fore wing with R_{4} and 5 stalked, the hind wing trapezoidal and usually wider, strongly rounded out at end of M_{3} and $\mathrm{Cu}_{1} \ldots \ldots$.....a few Gelechides
86. Hind wing lanceolate, narrower than fore wing Cosmopterygide
87. R_{2} arising at apex of cell, and M_{3} and culitals also closely crowded from lower angle, male usually with strong sexual modifications; five radials run to costa. BLastobaside
87. R_{2} arising less than nine tenths the length of the cell, and well away from the origin of \mathbf{R}_{3}. 88
88. Five veins run from cell to costa in fore wing. 89
88. Four teins run from cell to costa in fore wing, R_{5} ending decidedly below the apex.

90
89. Hind wing with M_{2} arising decidedly nearer M_{1} than $\mathrm{M}_{3} \ldots$.....Ethmide
89. Hind wing with M_{2} arising decidedly nearer M_{3} than M_{1} or rarely half way between them....................................... . . Ecophoride in part
90. R_{s} and s_{s} stalked; ocelli rudimentary or absent........ (Ecophoride in part
90. With all veins of fore wing arising separately or (Allononyma) with R_{4} and 5 stalked and large ocelli.............................. Yponomeutide in part

EXPLANATION OF FIGLRES.

Fig. 1. Typical primitive Lepidopterous venation (Eriocephala thunbergella, with the addition, in dots, of a few veins lost in Eriocephala, but denerally preserved), the veins numbered according to the Comstock-Needhan and German systems.

Sc, Subcosta.
R, Radius.
M, Media.
Cu, Cubitus.
A, Anal.
hum, humeral cross-vein.
udev, upper discocellular vein (cross-vein radius-media).

mdev, middle discocellular vein (in this case, and usually, a portion of mediaone).
lder, lower discocellular vein (the portion so marked is a portion of the stem of media one-plus-two, but as ordinarily defined the short cross-vein m . would also be considered part of it).

1st A is a concave vein, and when it becomes rudimentary is known as the submedian fold.

The veins, hum., Sc1, sc-r, r, cu-1st a, 1st-2d a, and 4th a, are lost in almost all higher forms.
i, Intercalated cell (reckoned as part of the discal cell).
acc. c, Accessory cell (reckoned as part of the discal cell in micros- and butterflies, where it is more or less completely fused with it, but not in most moths, where it is perfectly separated, when present).

Fig. 2. Portion of bleached wing-membrane, showing points of attachment of scales and aculeæ.

THE ALIMENTARY CANAL OF A CERCOPID.

By J. C. Kershaw.

The following brief notes refer to Tomaspis saccharina Dist., a pest of sugar cane in Trinidad, West Indies, where the nymphs feed on cane roots and the adults on the leaves. In the nymph of this Cercopid the air, which all sucking insects doubtless imbibe in quantity along with the liquid food, appears to pass through the alimentary canal and be utilized in forming the air-bubbles coated with mucinoid which are emitted from the anus and form the froth in which the nymph lives. After examining this Cercopid I am the more inclined to believe that (as stated in a previous paper on Flata in Psycue) the "food-reservoir" in the head of Flata functions in part as an air-separator to rid the liquid food of superabundant air before it passes through the alimentary canal. In the Cercopid nymph, however, the air is directly utilized, as mentioned above. In this Cercopid and in Cicada the diverticulum or pouch of the midgut (forming the "food-reservoir" of the head in Flata and the filter-chamber of the thorax in Cercopid and Cicada) is almost filled up by the zigzag course through it of the posterior part of the midgut and the anterior part of the malpighian tubes. This diverticulum, pouch or filter-chamber is entirely situated in the thorax, as are also the diverticula of Perkinsiella and other Homoptera mentioned in the paper referred to above; only entering the head in Flata, Pyrops and Dictyophoro-

[^0]: ${ }^{1}$ The New England families are indicated by small capitals.

[^1]: *The Hypsidæ, distinguished by the well developed tongue, are represented by an unidentified and aberrant species in the Barnes Collection.

